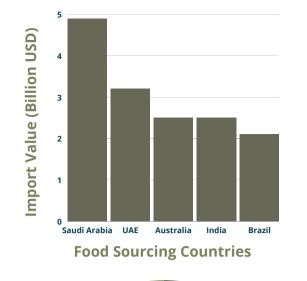


BARREN — BOUNTIFUL

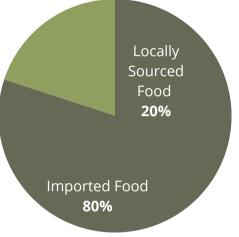
OVERCOMING QATAR'S LACK OF ARABLE LAND

Team 5

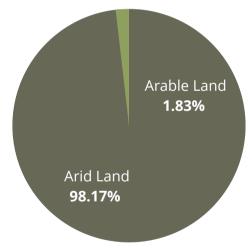
Abdellatif Hussine Haya Al-Rewaily


Meera Jarrar Racha Qaddura

PROBLEM



Heavy Reliance on Imports


Fig.1 - Qatar's largest food importers prior to the blockade¹

Insufficient Local Crop-Raising

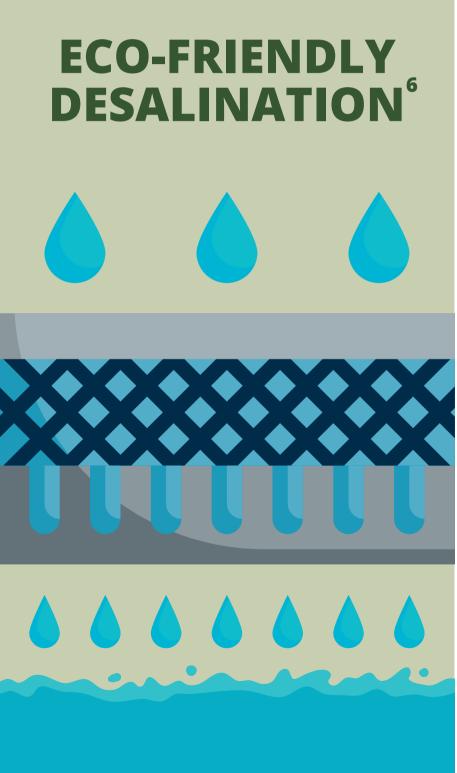
Fig.2 - Breakdown of Qatar's food sources $(2015)^2$

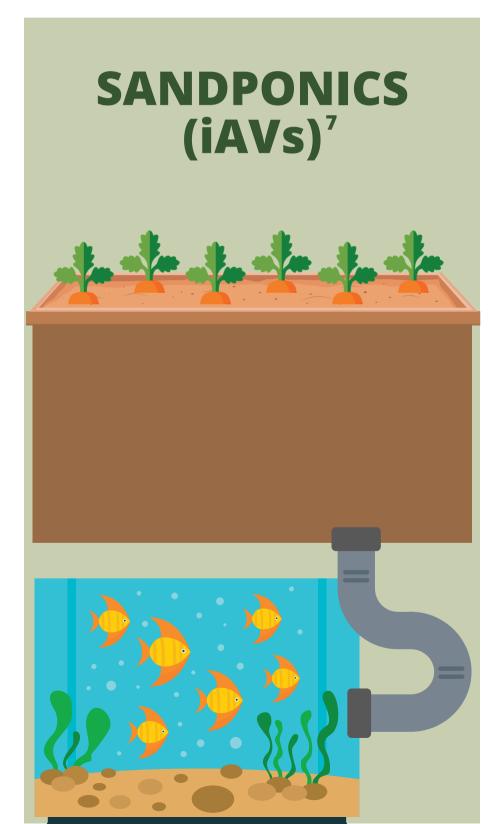
Limited Area of Fertile Soil

Fig.3 - Amount of fertile agricultural land available in Qatar (2020)³

Fragile Economy & Food Insecurity

Fig.4 - The financial losses incurred by Qatar as a result of the blockade⁴




OBJECTIVE

To promote the development of agricultural practices that increase local sustainable agricultural production in Qatar

APPROACHES

CRITERIA

Table.1 - Considerations made within each criterion in the decision matrix

Criterion	Focus		
Cost	How high are the start-up costs? What about the running costs? Is it expensive to maintain?		
Design Accessibility	Is the design scalable? Are the materials easily obtainable?		
Environmental Sustainability	Is there any negative impact on the environment, whether short-term or long-term?		
Average	An average of the scores for each criterion		

DECISION MATRIX

Table.2 - The decision matrix applied on the 3 potential solutions

Criterion (out of 5)	Approach		
	Hydrogel Technology	Eco-Friendly Desalination	Sandponics (iAVs)
Cost	2	3	5
Design Accessibility	2	3	4
Environmental Sustainability	2	2	5
Average	2	2.7	4.7

SANDPONICS

HOW

Fish produce ammonia

Bacteria convert ammonia into nitrates

Plants consume nitrates as nutrients

Sand acts as a:

- Mechanical Filter: purifies water of dirt
- Biofilter: removes pathogens

Water is drained back into fish habitat

WHY

Both root and stem crops feasible

ALINIY QUESTIONS?

REFERENCES

